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Notion of integrability for time-dependent Hamiltonian systems:
Illustrations from the relativistic motion of a charged particle

S. Bouquet and A. Bourdier
Commissariat a` l’Energie Atomique, DRIF, De´partement de Physique The´orique et Applique´e, Boı̂te Postale 12,

91680 Bruye`res-le-Chaˆtel, France
~Received 8 August 1997!

It is shown that ‘‘Liouville’s theorem’’ on integrability still holds in the case of time-dependent Hamiltonian
systems; when they haven independent, possibly time-dependent, invariants the solution can be found with
quadratures and no chaos can take place. This is applied to three important problems describing the motion of
a particle in an electromagnetic field. The first is the motion of a charged particle in a homogeneous constant
magnetic field and a transverse circularly polarized homogeneous electric field. In the second application the
electric field is replaced by a standing electromagnetic wave. The third concerns an oscillator with a quadratic
nonlinearity in the force.@S1063-651X~98!10801-2#

PACS number~s!: 02.90.1p, 41.20.2q
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I. INTRODUCTION

One might have expected that knowledge of 2n indepen-
dent invariants would always be required to obtain the g
eral solution for an autonomous Hamiltonian system withn
degrees of freedom. This is suggested by the fact that Ha
ton’s equations are a set of 2n first-order equations. How
ever, from a result due to Bour@1# and often attributed to
Liouville @2#, the existence of n independent, time-
independent invariants in involution is sufficient to derive
general solution to the problem@3,4#. Liouville extended this
result to nonautonomous systems by showing thatn indepen-
dent, possibly time-dependent, invariants in involution c
be used to obtainn additional invariants@2,5#. However, he
did not construct the 2n invariants asn canonically conju-
gate pairs@6#.

An autonomous Hamiltonian system is called complet
integrable if it possessesn independent, time-independe
invariants in involution@3,4,7,8#. The solution for the motion
of a completely integrable system can be expressed in te
of canonical action-angle variables@3,4,7,8#. Unfortunately,
this does not mean that the equations of motion can be i
grated analytically, but the solution always exists and
unique for specified initial data. Moreover, when the moti
is completely integrable, all the Lyapunov exponents one
compute equal zero. Chaotic trajectories can fill only
phase-space volume of zero measure.

A general time-dependent Hamiltonian withn degrees of
freedom is usually considered to be equivalent to an auto
mous one in an extended phase space withn11 degrees of
freedom@8#. In Sec. II B we show that the equivalent syste
in the extended phase space is completely integrable if
original, nonautonomous system possessesn independent,
possibly time-dependent, invariants in involution. T
Hamiltonian in the extended phase space is introduced c
fully and it can be proved that it is possible to constru
2(n11) invariants asn11 canonically conjugate pairs@6#.
The demonstration for the casen51 is given by one method
in Sec. II A and by a second method in Sec. II B. On t
other hand, it was shown by Kozlov and Kolesnikov that t
571063-651X/98/57~2!/1273~11!/$15.00
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solution of the original nonautonomous system can be fo
by quadratures@3,9#. This result has been shown explicitl
for n51, provided one invariant is specified, and a seco
invariant is then expressed in terms of quadratures, wh
permits one to derive formally the solution as a function
two constants@10–12#. This result is outlined Sec. II A. We
have decided to call a time-dependent Hamiltonian sys
integrable if it possessesn independent, possibly time
dependent, invariants in involution. This is an extension
the first definition of integrability. In addition, it is show
that Lyapunov exponents are not positive in the case of
tegrable systems. Consequently, no chaos can take plac
this sense, we say that ‘‘Liouville’s theorem’’ on integrab
ity still holds in the case of time-dependent Hamiltonian s
tems.

We illustrate this concept for three examples in Sec.
The first example concerns the study of the relativistic m
tion of a charged particle in a constant homogeneous m
netic field and transverse circularly polarized electric fie
@13–15#. It has been shown recently how the Hamiltoni
formalism brings enlightenment to this problem@16#. The
integrability of this two-degrees-of-freedom system first c
be shown by finding two independent constants in invo
tion, one of them obtained by using Noether’s theore
@3,4,17,18#. Alternatively, the system can be reduced to
one-dimensional problem that can be solved by quadrat
in two different ways and, because of the extension of
definition of integrability we have made, shown to be int
grable@16#. Starting with the first approach, canonical tran
formations @3,4,7,8,16,18# permit one to take the two firs
invariants as two new conjugated variables and conseque
we can reduce the system to a time-dependent Hamilto
system with one degree of freedom possessing an inva
that is obtained by transforming the one derived from No
her’s theorem. It is therefore integrable in the present ‘‘Lio
ville sense.’’ As is shown in Sec. II A, a second integral c
be derived that permits one to give the solution in terms
quadratures. Another approach by quadratures exists
which the solution can be written in terms of the energy
the particle and the energy is shown to be the solution of
1273 © 1998 The American Physical Society
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1274 57S. BOUQUET AND A. BOURDIER
integrable differential equation.
The second application deals with the dynamics o

charged particle in a constant homogeneous magnetic
and a transverse standing electromagnetic wave. This p
lem is more realistic than the former since the electrom
netic field that is considered satisfies Maxwell’s equatio
exactly ~in the first case, the field is only a solution in th
limit of long wavelengths!. Noether’s theorem is still applied
to derive an invariant. Canonical transformations are use
order to reduce the problem to a system with two degree
freedom. No second invariant was found. Consequently,
problem may be nonintegrable and chaotic trajectories m
exist in some circumstances. Other canonical transformat
are used to change the problem into an autonomous
After performing Poincare´ maps and calculating positiv
Lyapunov exponents, we show that trajectories can be c
otic.

The third application is about the motion of a charg
particle described by a radial equation in which anharmon
ity is included with a term quadratic in position for the forc
In addition, it is assumed that the anharmonicity depends
time, the coefficient of the non-linearity being a tim
dependent functionf (t). It is shown that there exists at lea
one form for f (t) such that this problem is integrable.

II. INTEGRABILITY OF TIME-DEPENDENT
HAMILTONIAN SYSTEMS

In this section we study the integrability of a
n-degrees-of-freedom time-dependent Hamiltonian syst
However, in order to make the approach easier, we be
with n51.

A. Integration by quadrature of one degree
of freedom time-dependent systems

This is an outline of what has been done in Refs.@10–12#.
We consider one-dimensional time-dependent proble
where the HamiltonianH(Q,P,t) is a function of canoni-
cally conjugate variables (Q,P) and timet. It must be noted
thatH is not a constant of motion as it depends explicitly
time. The existence of a first integralI (Q,P,t) is assumed.
The formal inversion ofI with respect toP gives

P5G~Q,I ,t !, ~1!

whereG is the reciprocal function ofI . Using Eq.~1! in one
of Hamilton’s equations, we get

Q̇5h~Q,I ,t !, ~2!

whereh(Q,I ,t) is a specified function. Equation~2! can be
considered as a first-order differential equation with para
eter I . Looking for an integrating factora(Q,I ,t) ~adQ
2ahdt is a total differential form!, the partial derivative of
the coefficient ofdQ with respect tot must equal the partia
derivative of the coefficient ofdt with respect toQ, i.e.,
a t52(ah)Q , or after development

a t1aQh1ahQ50, ~3!

where subscripts stand for the partial derivatives. One
show that a solution to Eq.~3! is @10,11#
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a5GI~Q,I ,t !5@ I P~Q,P,t !#21, ~4!

whereGI5]G/]I andI P5]I /]P. Then, to integrate Eq.~2!,
we note that sinceGIdQ2GIhdt is a total differential, it can
be interpreted as the total derivative of a first integ
J(Q,I ,t) such thatdJ5GIdQ2GIhdt ~no term is propor-
tional to dI as I is a first integral!. Under these circum-
stances, one must have

JQ~Q,I ,t !5GI~Q,I ,t !, Jt~Q,I ,t !52GI~Q,I ,t !h~Q,I ,t !.
~5!

Integration leads to

J~Q,I ,t !5E
0

Q dQ8

I P@Q8;P5G~Q8,I ,t !;t#

2E
0

t HP@0;P5G~0,I ,t8!;t8#

I P@0;P5G~0,I ,t8!;t8#
dt8. ~6!

In this way a second invariant is expressed in terms
quadratures@10–12#. As announced in the Introduction,I
andJ are canonically conjugate, i.e.,@J,I #51, where@A,B#
stands for the Poisson bracket ofA with B @12#. Equation~6!
shows thatQ can be derived formally as a function of tim
and as a function of two arbitrary constants of motionI and
J. This is in good agreement with the work of Kozlov an
Kolesnikov, who proved that in such a case the solution
be found with quadratures@3,9#. In that sense our system i
integrable.

B. Integrability of time-dependent systems
with N degrees of freedom

Let us consider an autonomous HamiltonianH ~qj ,pj ;
j 51,n11! with n11 degrees of freedom of the specifi
form ~the reason for this form will become clear later!

H~qj ,pj ; j 51,n11!5pn111H~qi ,pi ,qn11 ; i 51,n!,
~7!

whereH ~qi ,pi ,qn11 ; i 51,n! is an arbitrary function of its
arguments. Hamilton’s equations are~t is the time associated
with this system!

dq1

dt
5

]H
]p1

5
]H

]p1
, ~8a!

dp1

dt
52

]H
]q1

52
]H

]q1
, ~8b!

A

dqj

dt
5

]H
]pj

5
]H

]pj
, ~8c!

dpj

dt
52

]H
]qj

52
]H

]qj
, ~8d!

A
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57 1275NOTION OF INTEGRABILITY FOR TIME-DEPENDENT . . .
dqn11

dt
5

]H
]pn11

51, ~8e!

dpn11

dt
52

]H
]qn11

52
]H

]qn11
. ~8f!

Since this system is autonomous,H is conserved

H5I 1 , ~9!

where I 1 is a constant. Moreover, Eq.~8e! can be readily
integrated to give

qn112t5I n11 , ~10!

where I n11 is a constant. Thus two invariants areH and
qn112t and we found them to be canonically conjugate

@qn112t,H#51. ~11!

One concludes that, in the casen51, two invariants can be
derived for which the Poisson bracket is unity. This is
good agreement with Sec. II A.

Let us now replace the variableqn11 by t ~we will see
below thatt plays the role of the usual time! and one can
write the equations of motion~8! as

dq1

dt
5

]H~qi ,pi ,t !

]p1
, ~12a!

dp1

dt
52

]H~qi ,pi ,t !

]q1
, ~12b!

A

dqi

dt
5

]H~qi ,pi ,t !

]pi
, ~12c!

dpi

dt
52

]H~qi ,pi ,t !

]qi
, ~12d!

A

dpn11

dt
52

]H~qi ,pi ,t !

]t
. ~12e!

The first 2n equations are those of ann-dimensional nonau-
tonomous system for whichH(qi ,pi ,t) is the time-
dependent Hamiltonian. Finally, sincedH/dt5]H/]t, Eq.
~12e! can be written as

dpn11

dt
52

dH

dt
. ~13!

By taking Eqs.~7! and ~9! into account, its solution can b
written as

pn1152H1I 1 . ~14!

This equation, which is a consequence of Eq.~12e!, is just
Eq. ~7!, whereI 1 stands forH. The difference between th
autonomous Hamiltonian functionH and its valueI 1 must be
emphasized. The valueI 1 of H is an arbitrary constant alon
the solution trajectories, which can chosen to be zero. T
result leads to an important remark concerning what has
peared in the literature about the extended phase sp
When an n-dimensional time-dependent Hamiltonia
H̃(qi ,pi ,t) ( i 51,n) is considered in Ref.@8#, the authors set
qn115t and pn1152H̃ and take H̃(qi ,pi ,qn11 ,pn11)
5H̃1pn11[0 as a Hamiltonian in the extended pha
space. However, it is usually~incorrectly! omitted that this
value is valid only along a solution trajectory. In additio
this is misleading asH̃ is a function identical to zero and
cannot be considered as an arbitrary constant of motion.
functionH can be chosen as a Hamiltonian and its value
an arbitrary constant if one sets

pn1152H̃1I 1 . ~15!

Let us again consider Eqs.~12! and assume tha
H(qi ,pi ,t) hasn independent first integrals, possibly tim
dependent,Ji(qi ,pi ,t) in involution. We have

dJi

dt
5

]Ji

]t
1(

i 51

n S ]H

]pi

]Ji

]qi
2

]H

]qi

]Ji

]pi
D50. ~16!

Then

@Ji ,H#5(
i 51

n S ]Ji

]qi

]H
]pi

2
]Ji

]pi

]H
]pi

D2
]H
]t

]Ji

]pn11
1

]H
]pn11

]Ji

]t

5(
i 51

n S ]Ji

]qi

]H

]pi
2

]Ji

]pi

]H

]qi
D1

]Ji

]t
3150. ~17!

Thus, because]Ji /]t50 and@Ji ,H#50, the integralsJi are
also invariants for the system associated w
H(qi ,pi ,qn11 ,pn11). The system withn11 degrees of
freedom hasn11 independent invariants in involution and
therefore completely integrable~H is independent of theJi ’s
because they do not depend onpn11!. Therefore, we have
shown that the time-dependent system associated withH,
which is integrable in the sense that the solution can
found by quadratures~according to Kozlov and Kolesnikov!,
is equivalent to a completely integrable system with one
ditional degree of freedom.

The solution of the system withn11 degrees of freedom
can be expressed in terms of canonical action-angle varia
and, as a consequence, the solution for the system win
degrees of freedom can be found by using the inverse tr
formation. It should be noted that being able to transform
nonautonomous system to a completely integrable auto
mous system does not imply that the solution of the non
tonomous system can be expressed simply. An exampl
that for a linear, one-degree-of-freedom, time-dependent
tem was given by Salat and Tataronis@19#.

If the system is completely integrable in the extend
phase space, the numerically calculated Lyapunov expo
corresponding to any trajectory cannot be positive. In t
space one can consider pairs of trajectories with the s
initial time t and the same initialpn11 . The Lyapunov ex-
ponents are given bysext5 lim(1/t)ln@D(t)/D(0)# in the limit
when t→` and D(0)→0, whereD(t) measures the dis
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1276 57S. BOUQUET AND A. BOURDIER
tance between the two solutions at a timet @7,8#. In the same
way, the corresponding Lyapunov exponents can be ca
lated in the original space from the limitsorig
5 lim(1/t)ln@d(t)/d(0)# whent→` andd(0)→0, whered(t)
represents the distance between the two solutions at timet. It
is shown in the Appendix thatd(0)5D(0) and d(t)
<D(t). Then sorig<sext and one can conclude that an
Lyapunov exponent cannot be positive in the original sp
provided none of them is positive in the extended ph
space. As a consequence, in the case of time-depen
Hamiltonian problems withn independent constants of mo
tion ~possibly time dependent! in involution, only a set of
measure zero can contain chaotic trajectories.

III. APPLICATIONS TO THE DYNAMICS OF A CHARGED
PARTICLE IN AN ELECTROMAGNETIC FIELD

A. Integrability of the motion of a charged particle
in a constant homogeneous magnetic field and a transverse

rotating electric field

The constant magnetic fieldB0 is assumed to be along th
z axis and the electric field has the components

Ex5E0 cosv0t, Ey5E0 sin v0t, Ez50, ~18!

whereE0 andv0 are constants. The following gauge is ch
sen for the electromagnetic field:

A52S B0

2
y1

E0

v0
sin v0t D êx1S B0

2
x1

E0

v0
cosv0t D êy .

~19!

As a consequence of Maxwell’s equations, the electric fi
and the total magnetic field cannot be constant along thz
axis. However, in this paper we consider long waveleng
and the variation of the magnetic field can be neglected
region where the electric field is maximum. The motion
the charged particle is assumed to be in thex-y plane. Its
relativistic Hamiltonian expressed in mks units is

H5F S Px2
eE0

v0
sin v0t2

eB0

2
yD 2

c2

1S Py1
eE0

v0
cosv0t1

eB0

2
xD 2

c21m2c4G1/2

,

~20!

where2e andm are the charge and rest mass of the partic

1. First demonstration of the integrability of the problem

Hamilton’s equations allow us to find immediately tw
constants of motion@16#

C15Px1
eB0

2
y, C25Py2

eB0

2
x. ~21!

Another constant of motion can be obtained by using N
ther’s theorem@3,4,16,17#. The result is@16#

C35yPx2xPy1H/v0 . ~22!
u-

e
e
ent

d

s
a

f

.

-

It can be noted that the first two constants are canonic
conjugate

FC1 ,
C2

eB0
G51, ~23!

where nowC1 and C2 must be considered as functions
their arguments@see Eqs.~21!#. Among these three constan
of motion, one cannot find two of them in involution since

@C1 ,C3#5C2 , @C2 ,C3#52C1 . ~24!

However, another constant of motion is given by

C45C1
21C2

2. ~25!

It satisfies the relation

@C4 ,C3#52C1@C1 ,C3#12C2@C2 ,C3#50. ~26!

As C3 andC4 are two independent constants in involutio
the system is integrable according to the definition in
introduction.

2. Reduction to a one-dimensional problem, second
demonstration of the integrability of the problem

What follows is a part of what has been done in Ref.@16#.
Written in terms of the dimensionless variables and para
eters

x̂5x
v0

c
, ŷ5y

v0

c
, P̂x,y5

Px,y

mc
, t̂5v0t,

Ĥ5g5
H

mc2 , a5
eE0

mcv0
, V05

eB0

mv0
,

the Hamiltonian is

Ĥ5F S P̂x2a sin t̂2
V0

2
ŷD 2

1S P̂y1a cos t̂1
V0

2
x̂D 2

11G1/2

. ~27!

In these variables, the constants of motion correspondin
C1 andC2 are

Ĉ15 P̂x1
V0

2
ŷ, Ĉ25 P̂y2

V0

2
x̂. ~28!

They satisfy

@Ĉ1 ,Ĉ2#5V0 . ~29!

By using this property we can show that the system c
be described by a single-degree-of-freedom time-depen
Hamiltonian. We takeĈ1 and Ĉ2 ~one must be normalized
by V0! as new conjugate momentum and coordinate and
choose a canonical transformation (x̂,ŷ,P̂x ,P̂y)
→( x̃,ỹ,P̃x ,P̃y) defined by the type-2 generating functio
@3,4,7,8,16#
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57 1277NOTION OF INTEGRABILITY FOR TIME-DEPENDENT . . .
F25S P̃x2
V0

2
ŷD x̂1 P̃yŷ. ~30!

The canonical transformation is

x̂5 x̃, ŷ5 ỹ, P̂x5 P̃x2
V0

2
ỹ, P̂y5 P̃y2

V0

2
x̃.

~31!

In these variablesĈ1 and Ĉ2 become

C̃15 P̃x , C̃25 P̃y2V0x̃. ~32!

Then we introduce a second canonical transforma
( x̃,ỹ,P̃x ,P̃y)→(Q1 ,Q2 ,P1 ,P2), generated by

F25~P21V0x̃!ỹ1P1S x̃1
P2

V0
D ~33!

and yielding

x̃5Q12
P2

V0
, ỹ5Q22

P1

V0
, P̃x5V0Q2 , P̃y5V0Q1 .

~34!

The resulting transformation, which is the product of the t
transformations, is given by

x̂5Q12
P2

V0
, ŷ5Q22

P1

V0
, P̂x5

1

2
~V0Q21P1!,

P̂y5
1

2
~V0Q11P2!. ~35!

In terms of these variables one has

Q25
Ĉ1

V0
, P25Ĉ2 ~36!

and the Hamiltonian is

H̄5@~P12a sin t̂ !21~V0Q11a cos t̂ !211#1/2. ~37!

As expected,P2 and Q2 are cyclic variables since they d
not appear in the Hamiltonian. It depends upon time and
only one degree of freedom. In terms of these new variab
the constantC3 , which we now denote byK, is

K5H̄2
P1

2

2V0
2

V0

2
Q1

2. ~38!

The fact that this problem can be reduced to a one-deg
of-freedom system can help to predict the appearance o
trajectories easily@16#. As we have one constant of motio
we can conclude, according to the Introduction, that the s
tem is integrable. This is a second way to show the integ
bility of Hamiltonian ~20!. Finally, according to Sec. II A,
we can also conclude that a second constant of motion
Hamiltonian ~37! can be obtained and the solution can
given in terms of quadratures.
n

as
s,

e-
he

s-
a-

of

3. Another way to solve the problem

The equations of Hamilton derived from Eq.~37! are

Ṗ152
V0

g
~V0Q11a cos t̂ !, Q̇15

1

g
~P12a sin t̂ !.

~39!

Introducing the variables

Q̄15Q11a/V0 cos t̂, P̄15P12a sin t̂, ~40!

the complex quantityZ5 P̄11 iV0Q̄1 , taking into account
thatH̄5g5A11uZu2, Hamilton’s equations~39! are equiva-
lent to

Ż5
iV0Z

A11uZu2
2a exp~ i t̂ !, ~41!

which is the equation of a nonlinear oscillator under the
tion of an external force. Remembering thatg5A11uZu2,
we can consider Eq.~41! as formally linear. Thus the solu
tion of this equation can be written as

Z5A0 exp i @s~ t̂ !1d#2aE
0

t̂
exp i @s~ t̂ !2s~t!1t#dt,

~42!

with

s~ t̂ !5V0E
0

t̂
dt g21~t!, ~43!

whereA0 andd are real constants. The solution is formal
it depends ong, which is unknown. It will be used below to
derive an equation forg. Then

P15A0 cos@s~ t̂ !1d#1a sin t̂

2aE
0

t̂
cos@s~ t̂ !2s~t!1t#dt,

~44!

Q15
A0

V0
sin@s~ t̂ !1d#2

a

V0
cos t̂2

a

V0

3E
0

t̂
sin@s~ t̂ !2s~t!1t#dt.

The quantitiesA0 and d are determined so that att̂50, A0
2

5g0
2215 p̂x0

2 1 p̂y0
2 and tand5p̂y0 /p̂x0 ~p̂5p/mc, p is the

momentum of the particle!. The subscript 0 appended t
variablesg andp refers to their initial values.

We now derive an equation forg. Taking the time deriva-
tive of Eq. ~37! with respect to time and using Eqs.~44!, we
obtain

gġ52aH A0 cos@s~ t̂ !2 t̂1d#

2aE
0

t̂
cos@s~ t̂ !2s~t!1t2 t̂#dtJ . ~45!
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1278 57S. BOUQUET AND A. BOURDIER
This equation, multiplied by211V0 /g and integrated be
tween 0 andt̂, leads to

V0~g2g0!2
g22g0

2

2
2aA0 sin d

52aH A0 sin@s~ t̂ !2 t̂1d#

2aE
0

t̂
sin@s~ t̂ !2s~t!1t2 t̂#dtJ . ~46!

Then Eq.~45! is differentiated with respect to time and E
~46!, multiplied by 211V0 /g, is added to it. The result is
multiplied by gġ and integrated between 0 andt̂. In this
way, the following differential equation for the energy
derived:

~ ġ !21
g2

4
2V0g1R02

G0

g
2

K0

g2 50, ~47!

with

R05aA0 sin d1V0
21V0g02

g0
2

2
2a2, ~48!

G052V0aA0 sin d12V0
2g02V0g0

2, ~49!

and

K05a2A0
2 cos2d2G0g01R0g0

22V0g0
31

g0
4

4
. ~50!

This result is in agreement with the one given by Roberts
Buchsbaum@13#. Equation~47! describes a motion in a one
dimensional potential. It admits a solution that gives time
terms of a sum of elliptic integrals of the first and third typ
@20#. Hence the fact that an analytical solution of Eq.~47!
exists permits us, with the help of Eqs.~44!, to expressQ1
andP1 in terms of quadratures.

B. Integrability of the motion of a charged particle
in a constant homogeneous magnetic field

and a transverse circularly polarized standing wave

The constant magnetic fieldB0 is still supposed to be
along thez axis ~Fig. 1!. The electromagnetic field now ha
the form

Ex5Ẽ0 cos~v0t !sin~k0z!,

Ey5Ẽ0 sin~v0t !cos~k0z!, Ez50,

Bx5
k0Ẽ0

v0
cos~v0t !sin~k0z!,

By52
k0Ẽ0

v0
sin~v0t !cos~k0z!, Bz5B0 ~51!

and the vector potential for the electromagnetic field is giv
by
d

n

A52S B0

2
y1

Ẽ0

v0
sin~v0t !cos~k0z! D êx

1S B0

2
x1

Ẽ0

v0
cos~v0t !cos~k0z! D êy . ~52!

The relativistic Hamiltonian of the motion of one electron

H5F S Px2
eẼ0

v0
sin v0t cosk0z2

eB0

2
yD 2

c2

1S Py1
eẼ0

v0
cosv0t cosk0z1

eB0

2
xD 2

c2

1Pz
2c21m2c4G1/2

. ~53!

This is a three-degrees-of-freedom time-dependent Ha
tonian. The invariantsC1 and C2 , which were defined in
Sec. III A, still exist. Noether’s theorem can be used andC3
is still a constant of motion.

WhenB050, the problem is described by a one degre
of-freedom Hamiltonian. Since we have at least one cons
of motion C15Px, C25Py or C35yPx2xPy1H/w0), the
system is therefore integrable. WhenẼ050, the Hamiltonian
becomes autonomous and sinceH andPz are two constants
in involution, the problem is completely integrable. Now s
P̂z5Pz /mc and ẑ5k0z and introduce the previous dimen
sionless variables and parameters~here E0 is replaced by
Ẽ0!. In the case whenk0c/v051, the following normalized
Hamiltonian is obtained:

Ĥ5F S P̂x2a sin t̂ cos ẑ2
V0

2
ŷD 2

1S P̂y1a cos t̂ cos ẑ1
V0

2
x̂D 2

1 P̂z
211G1/2

. ~54!

Here again, the canonical transformation given by Eqs.~35!
is used to reduce the problem to a time-dependent sys
with two degrees of freedom. The present Hamiltonian is

FIG. 1. Coordinate system.
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H̄5@~p12a sin t̂ cos ẑ!2

1~V0Q11a cos t̂ cos ẑ!21 P̂z
211#1/2, ~55!

with the constant of motion

K5H̄2
P1

2

2V0
2

V0

2
Q1

2. ~56!

We introduce action-angle variables for theQ1 ,P1 variables.
The canonical transformation (Q1 ,P1)→(u,J̃) is generated
by

F2~Q1 ,J̃!5E
0

Q1A2~ J̃V02 1
2 V0

2Q1
2!dQ1 ~57!

and yields

Q15A2J̃/V0 sin u, P15A2J̃V0 cosu. ~58!

Then the Hamiltonian becomes

H% 5@2J̃V01a2 cos2 ẑ12a cos ẑ ~2J̃V0!1/2

3sin~u2t !1 P̂z
211#1/2 ~59!

and the first integralK becomes

K̄5H% 2 J̃. ~60!

Finally, another canonical transformation (u,J̃,ẑ,P̂z)
→(f,J̃,ẑ,P̂z) is introduced, generated byF2(u,ẑ,J̃,P̄z , t̂)
5 J̃(u2 t̂)1 ẑP̂z . It yields

f5u2 t̂. ~61!

In these variables, we have

H̄̄
¯

5@2J̃V01a2 cos2 ẑ12a cos ẑ~2J̃V0!1/2

3sin f1 P̄z
211#1/22 J̃. ~62!

FIG. 2. Surface-of-section plots for some trajectories calcula
with the equations of motion derived from Eq.~65! when a50.5
andV050.35.
Since time is now ignorable in this Hamiltonian, it is a con
stant of motion and one can remark that with these variab
the first integral obtained by using Noether’s theorem is t
Hamiltonian itself

K% 5 H̄̄
¯

, ~63!

whereK% is obtained by transformingK̄. Unfortunately, no
other constant of motion has been found. Chaotic trajector
are evidenced by performing Poincare´ maps. The plane
( J̃,f) with ẑ50(mod2p) is chosen to be the Poincare´ sur-
face of section~Fig. 2!. Figure 3 shows two trajectories de
rived with the same initial conditions but with two differen
time steps. Although the energy is very well conserved in t
two different cases, the two trajectories become rapidly d
ferent. This can be considered as a signature of chaos. T
a Poincare´ map is performed for one of these trajectories an
the points are indeed chaotic~Fig. 4!. The Lyapunov expo-
nent is also calculated for one of these trajectories. Benetti
method is used. This considers two trajectories with ve
close initial conditions. Renormalizations are performed e
ery fixed timeDt or each time the distance between the tw

d FIG. 3. Two trajectories calculated with the same initial cond
tions and two different time steps.

FIG. 4. Surface-of-section plots corresponding to one of t
trajectories shown in Fig. 3.
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1280 57S. BOUQUET AND A. BOURDIER
trajectories is 2.7 times the distance between the initial c
ditions@21# ~Fig. 5!. This Lyapunov exponent is compared
the one obtained for the same initial conditions in a situat
where the problem is known to be integrable~this occurs
when there is a magnetic field only:Ẽ050 or a50! ~Fig.
5!. The existence of chaotic trajectories proves that this s
tem is not integrable. What we have just done is equiva
to applying the present Liouville’s theorem to the syste
defined by Eq.~62!; K̄ is the only constant and no other on
independent ofK̄ and in involution with it can be derived.

C. Integrability of time-dependent anharmonic oscillators
with quadratic anharmonicity

The motion of a charged particle described by the eq
tion of an harmonic oscillator perturbed by a force quadra
in the position is considered. The anharmonicity is assum
to depend explicitly on time through a coefficientf (t). The
equation is therefore

q̈1v2q1 f ~ t !q250, ~64!

whereq is the radial position of the particle andv the con-
stant frequency of the field. This equation plays an import
part in the field of the reversed-field pinch. It has alrea
been extensively studied@22#. In this section, we look for a
first integral, which permits one to show that this problem
integrable for a particular form off (t).

Equation ~64! can be derived from the one-degree-o
freedom time-dependent Hamiltonian

H~q,p,t !5 1
2 p21 1

2 v2q21 1
3 f ~ t !q3, ~65!

wherep5dq/dt. We seek a first integralS(q,p,t) quadratic
in the momentum and of the form@23#

S~q,p,t !5a0~q,t !1a1~q,t !p1a2~q,t !p2. ~66!

FIG. 5. Lyapunov exponents calculated for the same initial c
ditions as those of the trajectories shown in Fig. 3: (a) the renor-
malizations are performed every time the distance between the
trajectories is 2.7 times the initial distance, (b) renormalizations are
performed every fixed time, and (c) in the integrable case whena
50 is considered, renormalizations are performed every fixed ti
n-

n

s-
nt

-
c
d

t
y

s

The arbitrary functionsa0 , a1 , anda2 can be determined by
using the equation

dS

dt
5

]S

]t
1p

]S

]q
2@v2q1 f ~ t !q2#

]S

]p
50. ~67!

Using Eq.~66! for S(q,p,t) in Eq. ~67! gives, for the differ-
ent powers ofp,

]a2

]q
50, ~68a!

]a1

]q
1

]a2

]t
50, ~68b!

]a0

]q
1

]a1

]t
22a2@v2q1 f ~ t !q2#50, ~68c!

]a0

]t
2a1@v2q1 f ~ t !q2#50. ~68d!

One has four equations for three unknown quantities. T
system is therefore overdetermined andS(q,p,t) defined by
Eq. ~66! can be a constant of motion only for a restricted
of functions f (t). A consequence of Eq.~68a! is that

a25a2~ t !, ~69!

wherea2(t) is some time-dependent function. Inserting th
form for a2 into Eq. ~68b! we find that

a1~q,t !52ȧ2q1a1~ t !, ~70!

where a1(t) is another time-dependent function. Then E
~68c! leads to

a0~q,t !5a2v2q21 2
3 a2f ~ t !q31

ä2

2
q22ȧ1q1a0~ t !.

~71!

Finally, using Eqs.~70! and~71! in Eq. ~68d! and equating to
zero all the coefficients of the powers ofq, we obtain

ȧ050, ~72a!

ä11a1v50, ~72b!

d3a2

dt3
14v2ȧ222a1f ~ t !50, ~72c!

d~a2f !

dt
1

3

2
ȧ2f ~ t !50. ~72d!

As a consequence,

a25L0 , a1~ t !5L1 cosvt1L2 sin vt, ~73!

whereL0 , L1 , andL2 are three arbitrary constants. Cons
deringL15L250 in Eq. ~73!, Eq. ~72c! leads to

a2~ t !5K11K2 cos 2vt1K3 sin 2vt, ~74!
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where K1 , K2 , and K3 are three arbitrary constants. Th
solution of Eq.~72d! with Eq. ~74! gives

f ~ t !5@K11K2 cos 2vt1K3 sin 2vt#25/2. ~75!

One can conclude that whenf (t) is under the form defined
by Eq.~75!, there is a constant of motion, as all the functio
a0 , a1 , anda2 enteringS @Eq. ~66!# are determined. As a
consequence, this one-degree-of-freedom system is
grable. Poincare´ maps were performed drawing one point
each period off (t) defined by Eq.~75! ~Fig. 6!. The distri-
bution of the points is regular and this is in good agreem
with the fact that the problem has a first integral and
integrable.

IV. CONCLUSIONS

The theoretical part of this paper~Sec. II! is an attempt to
define the vague notion of integrability for time-depende
Hamiltonian systems withn (n.1) degrees of freedom
Even in the case of autonomous Hamiltonian systems
notion covers several definitions~complete integrability
@3,4,7,8#, integrability by quadratures@6,9–12# and Painleve´
integrability @24–26#!. It is clear that the problem is mor
difficult in the case of nonautonomous systems. The d
culty arises in the way to transform back the properties fou
in the extended phase space to the initial nonautonom
phase space. For this reason, in this paper the Hamiltonia
the extended phase space has been carefully introduce
the case of a time-dependent problem withn degrees of free-
dom. What follows summarizes our main results. In this
tended phase space, when one hasn independent, possibly
time-dependent, constants of motion in involution in t
original space, one hasn11 independent invariants in invo
lution. This permits us to conclude that, in this case,
system is completely integrable in the extended phase sp
The n first integrals allow us to solve the system by quad
tures and only a set of zero measure of the original space
be filled by chaotic trajectories. It is shown explicitly, in th
case of a one-dimensional problem, that if one has one
variant, one can derive a second one that gives the solu

FIG. 6. Surface-of-section plots for some trajectories wh
q̇(0)50. The functionf (t) is given by Eq.~75! with K151, K2

5K350.3, andv50.5 s21.
te-
t

t
s

t

is

-
d
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in
in

-

e
ce.
-
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n-
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in terms of quadratures. In this sense, we say that Liouvil
theorem can be applied in its usual way. This generali
Liouville’s theorem was applied to three problems conce
ing the motion of a charged particle.

First, the problem of relativistic motion of a charged pa
ticle in a constant homogeneous magnetic field and a tra
verse rotating electric field has been studied. The integra
ity of this problem was shown in two different ways
Noether’s theorem was used to find a constant of motion
the system. Then a second integral was derived that is in
pendent of and in involution with the first one. This is suf
cient to prove the integrability as this problem has two d
grees of freedom. Then, using canonical transformations,
reduced it to a time-dependent one with a single degree
freedom. This system has a constant of motion that is the
found previously by using Noether’s theorem and expres
in the present variables. This was the second way to sh
that this problem is integrable. We have also shown, by
ing two different methods, that this system can be solved
quadratures. It was proved in Sec. II A that when a syst
has a constant of motion, the solution can be expresse
terms of quadratures. The second way consisted in deriv
an equation for the energy which is integrable. As the co
dinates were shown to be expressed under the form
quadratures containing the energy, the solution can be g
in terms of quadratures.

The second application concerns the motion of an elec
in a constant homogeneous magnetic field and a transv
standing electromagnetic wave. The system was reduced
two-degrees-of-freedom problem. The ‘‘nonintegrability
was proved by performing Poincare´ sections and calculating
nonzero Lyapunov exponents.

The third application concerns the motion of a charg
particle, which is described by the harmonic-oscillator eq
tion perturbed by a quadratic term proportional to a tim
dependent functionf (t). Deriving a first integral quadratic in
the momentum and using the present Liouville theorem
was shown that the problem is integrable for a certain cl
of functions f (t).
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APPENDIX

It is shown in this appendix that the distanced(t) between
two trajectories with close initial conditions is smaller tha
the corresponding distanceD(t) in the extended phas
space. The proof is given for a two-dimensional extend
phase space, but it can be generalized easily to the case
it has n degrees of freedom. In the case of two degrees
freedom, Eq.~7! becomes

H~q1 ,p1 ,q2 ,p2!5p21H~q1 ,p1 ,q2!5const5k.
~A1!

In this space the flow is parametrized by the timet. We
consider two close trajectories 1 and 2 and we assume
the two initial timest1

i andt2
i satisfy

n



tim

ch

th

d

c-

is

w-

-

d,

,

ase

dent

1282 57S. BOUQUET AND A. BOURDIER
t1
i 5t2

i 50 ~A2!

and, consequently, the two trajectories have the same
t5t15t2 .

The initial conditions can be chosen arbitrarily on ea
trajectory

q1
1~0!5q1

i1, q2
1~0!5q2

i1, p1
1~0!5p1

i1, p2
1~0!5p2

i1,
~A3!

q1
2~0!5q1

i2, q2
2~0!5q2

i2, p1
2~0!5p1

i2, p2
2~0!5p2

i2,
~A4!

where the superscripts 1 and 2 stand for the number of
trajectory andi means initial. On each trajectory (j 51,2) the
HamiltonianH is a constant and its valuekj is obtained by
introducing Eqs.~A3! and~A4! into Eq. ~A1!. We decide to
set to zero the initial conditions

q2
1~0!5q2

2~0!50, p2
1~0!5p2

2~0!50, ~A5!

but the quantitiesq1
1(0), q1

2(0), p1
1(0), andp1

2(0) remain
arbitrary. Writing Hamilton’s equations in the extende
phase space, we find thatdp2

1/dt and dp2
2/dt do not have

the same values at the initial timet50. It turns out, there-
fore, that the further evolutions ofp2

1 andp2
2 will differ and

at any timet we shall have

p2
1~t!Þp2

2~t!. ~A6!

Let us examine now what happens toq2
1(t) and q2

2(t).
Hamilton’s equations give

dq2
1

dt
5

]H
]p2

1 51,
dq2

2

dt
5

]H
]p2

2 51, ~A7!

which lead to the obvious solutions

q2
1~t!5t1K1 , q2

2~t!5t1K2 , ~A8!

whereK1 andK2 are two arbitrary constants. However, a
cording to Eq.~A5!, we must haveK15K250 and one con-
cludes that

q2
1~t!5q2

2~t!5t. ~A9!

The initial distanceD(t50) between the two trajectories

D2~t50!5@q1
2~0!2q1

1~0!#21@p1
2~0!2p1

1~0!#2

~A10!

and at a timet, taking into consideration Eq.~A9!, it is
e

e

D2~t!5@q1
2~t!2q1

1~t!#21@q2
2~t!2q2

1~t!#2

1@p1
2~t!2p1

1~t!#21@p2
2~t!2p2

1~t!#2

5@q1
2~t!2q1

1~t!#21@p1
2~t!2p1

1~t!#2

1@p2
2~t!2p2

1~t!#2. ~A11!

Before returning to the initial space we make the follo
ing remarks. According to Eq.~10! ~Sec. II B!, one gets (n
51)

q25t1I 2 . ~A12!

Moreover, by definition, we have

q25t ~A13!

and, according to Eq.~A9!, we conclude that on each trajec
tory I 2,15I 2,250. Consequently,

t5t. ~A14!

One can point out that, obviously,t50 corresponds tot 50.
Therefore, it follows from Eqs.~A3! and ~A4! that

q1~ t50!5q1~t50!5A, ~A15!

p1~ t50!5p1~t50!5B, ~A16!

whereA andB denote arbitrary values. On the other han
the equation

dq1

dt
5

]

]p1
H~q1 ,p1 ,t ! ~A17!

is the same as

dq1

dt
5

]H
]p1

5
]

]p1
H~q1 ,p1 ,q2!. ~A18!

We conclude thatq1(t)5q1(t) and, in the same way
q2(t)5q2(t).

Let us give the initial distanced(t50) in the initial space.
We have

d2~ t50!5@q1
2~0!2q1

1~0!#21@p1
2~0!2p1

1~0!#2

~A19!

and we deduce thatD(t50)5d(t50). Moreover, at timet,
we haved2(t)5@q1

2(t)2q1
1(t)#21@p1

2(t)2p1
1(t)#2. Finally,

since q1
1(t)5q1

1(t), q1
2(t)5q1

2(t), p1
1(t)5p1

1(t), and
p1

2(t)5p1
2(t), it is obvious that D2(t)5d2(t)1@p2

2(t)
2p2

1(t)#2and we obtain the inequalities

d2~ t !<D2~t!, ~A20!

sorig<sext. ~A21!

As the system is completely integrable in the extended ph
space,sext cannot be positive, and the same is forsorig . As
a consequence, there is no chaos in the initial time-depen
system if no chaos arises in the extended phase space.
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